Computer Graphics

OpenGL Programming

Teacher: A.prof. Chengying Gao(=Spk3E)

E-mail: mcsgcy@mail.sysu.edu.cn

School of Data and Computer Science

mailto:mcsgcy@mail.sysu.edu.cn

Introduction

GonGL

Industry Standard API
for Computer Graphics

(W
{GE) Computer Graphics
‘bii" ﬂ\“g

What is OpenGL?

* The standard specification defining an API that interfaces with

the computer’s graphics system

* Cross-language
* Cross-platform

penGL.

* Vendor-independent

* Introduced in 1992 by Silicon Graphics Inc.

OpenGL (Open Graphics Library)

* OpenGlL is a cross-language, multi-platform application programming
interface (API) for rendering 2D and 3D computer graphics.

* Applications make calls to OpenGL , which then renders an image (by
handling the graphics hardware) and displays it

 The API contains about 150 commands.

* is purely concerned with rendering, providing no APlIs related to
input, audio, or windowing.

1
: Shadowy Leapin® Lizards _ (O] x|

Computer Graphics

Not the Only One Choice

* Examples: NVIDIA CUDA, DirectX™, Windows Presentation
Foundation™ (WPF), RenderMan™, HTML5 + WebGL™, JAVA 3D

r < NVIDIA. | @®rixars WPEAicrosoﬂ@
CUDA renderman W NET

Windows Presentation Foundation

HTML
Microsoft

E @ bl Directx Javast:

AN
i&i#:) Computer Graphics

Development of OpenGL

* OpenGL is an evolving API.

* New versions of the OpenGL specification are regularly
released by the Khronos Group, each of which extends the API
to support various new features.

* OpenGL 4.5 Release Date: August, 2014

C flt-gj:glatign and Compute \ @ G L)

Geometry Shaders = / ",
Gl [(Ve (T
Vertex and F t Open'Cl.' : | ,®GL|ES
\y "
- @_G\ > OpenMAXIL

Computer Graphics

What OpenGL Does

Allow definition of object shapes,
material properties and lighting

Arrange objects and interprets synthetic
camera in 3D space

Coverts mathematical representations
of objects into pixels (rasterization)

Calculates the color of every object

Computer Graphics

penGL 4.5

CORE PROFILE

OpenGL and OpenGL Utility Toolkit

* No high-level rendering functions for complex objects

* Build your shapes from primitives, points, lines, polygons, etc.

* The utility library GLUT provides additional support

* (GLUT) is a library of utilities for OpenGL programs, which primarily
perform system-level |/O with the host operating system.

* Functions performed include window definition, window control, and
monitoring of keyboard and mouse input.

* Routines for drawing a number of geometric primitives (both in solid
and wireframe mode) are also provided, including cubes, spheres and
the Utah teapot.

e GLUT also has some limited support for creating pop-up menus.

Computer Graphics

Simplified OpenGL Pipeline

Triangles in Fragments Image
5D mesh screen space Fragments with colors QOutput
T
| |
[|
L A \ L \
\ ’f \ ff \ / \ ,f
/
\q F \-u / \u / \\1 f
Vertex Py Raster Fragment
processing Rasterization Operations processing
. F=xE
Display I \ = Texture
List [IL | filtering

Per-Vertex

Operations
Evaluator Rasterization

Primitive
Assembly

Per-Fragment

Operationes Frame Buffer

Y

Texture
Memory

Pixel
Operations

il
i

Computer Graphics

Pieces of OpenGL Pipeline

Per-Vertex h
lons - Per-Fragment
i [Rasterization Operationes Frame Buffer
/ /’ Sto re S
- J/
Texture

“Subroutines

—— — (FRF)”
Faster!

_ Store on ¢Pﬂ

- Pre-compute transformations

AV
{ g) Computer Graphics

Pieces of OpenGL Pipeline

r

Construct
geometric objects

Evaluator é

AV
i&#:) Computer Graphics

Pieces of OpenGL Pipeline

Change meshed
geometry

Store primitive
4 Per-Vertex) Shapes

Operations

Primitive
Assembl
\ y

/|

(reludes aﬁ/b/o/}(;_/

wx
AV

*
:&fps) Computer Graphics
ey S

Pieces of OpenGL Pipeline

Rasterization

Rasterization

Computer Graphics

Pieces of OpenGL Pipeline

Modify and
combine per-pixel
information

Per-Fragment
Operationes

A

*
i&i#:) Computer Graphics

Pieces of OpenGL Pipeline

r

Prepare image to
be displayed

Frame Buffer

Related API

opengl32.lib (OpenGL Kernel Library)

Part of OpenGL
Use the prefix of gl (ex: gIBegin())

GLU (OpenGL Utility Library)

Part of OpenGL
Use the prefix of glu (ex: gluLookAt())

GLUT (OpenGL Utility Toolkit)

Not officially part of OpenGL

Provide common features for window system

create window, mouse and keyboard, menu, event-driven
Lack of modern GUI support (e.g. scroller)

Use the prefix of glut (ex: glutDisplayFunc())

GLUI (on top of GLUT)

C++ interface library
Provide buttons, checkboxes, radio buttons etc.

Computer Graphics

Installing GLUT - The OpenGL Utility Toolkit

e On Windows:

* Download from OpenGL website:

e https://www.opengl.org/resources/libraries/glut/elut downloads.php

* glut-3.7.6-bin has the dll/lib/header that are required
* Copy glut.dll to {Windows DLL dirf\glut32.dlI
* Copy glut.lib to {VC++ lib path}\glut32.lib

* Copy glut.h to {VC++ include path}\GL\glut.h

Computer Graphics

https://www.opengl.org/resources/libraries/glut/glut_downloads.php

Using GLUT

* Only need to include glut.h
 #include <GL\glut.h>
* Automatically includes gl.h and glu.h
* Lighthouse3D has a good GLUT tutorial

e http://www.lighthouse3d.com/tutorials/

Computer Graphics

http://www.lighthouse3d.com/tutorials/

Stages in OpenGL

[Define object in world scene]

l

[Set modeling and viewing transformations]

l

[Render the scene]

Computer Graphics

How OpenGL Works

* OpenGL is a state machine

* You give it orders to set the current state of any one of its

internal variables, or to query for its current status
* The current state won’t change until you specify otherwise

e Each of the system’s state variables has a default value

Computer Graphics

Functions of OpenGL

* Primitive - WHAT - Point, Edge, Polygon
* Attribute - HOW

* Transformation - Viewing & Modeling

* Input - provided by GLUT

e Control - provided by GLUT

* Query

{&@:) Computer Graphics

Function Format of OpenGL

GE G

/

glVertex3f(x, vy, 2z)
/ / \ b - byte
BT GLE ZEAEL ub - unsigned byte
GLUE: glu 2 - (x,y) %, v, zNfloat S = short
GLUTHEE:glut 3 - (x,y,2) us - unsigned short
4 - (x,¥,Z,W) i' - int. _
glVertexB £~ (p) ui - unsigned int
f - float
d = double

{.

+r

EREHTR RN pNTR A floatH4A

Computer Graphics

OpenGL Hello World

* Prerequisite

* Head Files:
 #include <GL/gl.h>
* #include <GL/glu.h>
* #include <GL/glut.h>

* Library Files:
* Compiled files folder\opengl32.lib glu32.lib glut32.lib
e C:\Windows\System32\opengl32.dll glu32.dll glut32.dll

Computer Graphics

Basic Structure Of OpenGL Program

Configure

& Initializing Handle
User Render
Open Works Event
Window

* NOT Object-Oriented!!

e Use states to control

* Infinite Loop

Computer Graphics

Event Driven Programming

Display
Handler

Keyboard
Handler

Main
Event
Loop

T
-

Mouse
Handler

Computer Graphics

2D demo

Less than 20 lines!
#include<gl/glut.h> Not that HARD

void renderScene(void)

5
1
glClear(Gl
glBegin(Gl L IANGLES) ;
glColor3f(0. OF 1.0, 0.06f);
glVertex3f(-0. 5, -0.5,0.0);
glVertex3f(0.5,0. ,0.@),
glVertex3f(0.0,0.5,0.0);
glEnd();
glFlush();

main(int argc

glutInit(&argc, argv);
glutCreatellindow(“Hello OpenGL™);
glutDisplayFunc(renderScene);
glutMainLoop();]

Computer Graphics

2D demo

#include<gl/glut. h> , initialise GLUT

renderScene(

glClear(
glBegin(§-
glColor3f(0.0f, 1.0f, 0.0f);

glVertex3f(-0.5,-0.5,0.0); : reate window with title

0
glVertex3f(0.5,0.0,0.0);
glVertex3f(0.0,0.5
glEnd();

,0.0);

EiELeB) tell the program how
. e » to redraw the window
A (callback)

glutInit(& :)iz
glutCreateWindow("Hello OpenGL");

glutDisplayFunc(renderScene); ,
T T F » Event Handler Loops

8;

Computer Graphics

2D demo

#include<gl/glut.h> CIear the bUffer

roid renderScene(void)

glClear(GL_COLOR_BU ‘_~._ GL_DE : i}
g1Begin(GL_TRIANGLES); mmmeermemmsmrerermeee & let’s draw a triangle
glColor3f(0.0f, 1. G'F 0.0f); =

glVertex3f(-0.5,-0.5,0.0); : ,

glVertex3f(0.5,0.0,0.0); — -

glVertex3(0.0,0.5,0.0); lmu_ g using RGB color green
glEnd() ; s .

glFlush(); e

— s this is the 3 points of
nt main(int argc, char > N — the triangle

glutInit(&arg argv);

glutCr‘eatel’lndou('‘Hello OpenGL™), e end Of draWing

glutDisplayFunc(renderScene);
glutMainLoop();

Computer Graphics

Structure of GLUT-Assisted Programs

 GLUT relies on user-defined callback functions, which
it calls whenever some event occurs
« Function to display the screen
* Function to resize the viewport
* Functions to handle keyboard and mouse events

Computer Graphics

Callbacks

e Wiki: In computer programming, a callback is a reference to a piece of
executable code, that is passed as an argument to other code. This allows a
lower-level software layer to call a subroutine (or function) defined in a
higher-level layer.

* Usage

* Callbacks allow the user of a function to fine-tune it at runtime, another use is
in error signaling.
» Callbacks may also be used to control whether a function acts or not.
* |n C/C++: function pointer
Application program

Main program Callback function
calls

Library function

Software library

Computer Graphics

Callbacks

* Typically, the main thread will just run in a loop, waiting for events to occur
- for example, for the user to move his mouse in your window, or click one
of your buttons.

* The GUI framework will provide a mechanism for you to pass it function
pointers, which it will then associate with certain events. When an event

occurs, the event loop will invoke any callback functions you've provided for
that event.

* Often, the callback function will have parameters, and the event dispatcher
(EHEE2S) will provide you with extra information about the event
(perhaps the exact x,y coordinates of the mouse, for example) through the
arguments it calls your callback function with.

Computer Graphics

Display Callback

Called when window is redrawn

void redraw()

{
glClear(GL_COLOR_BUFFER_BIT);

g1Begin(GL_QUADS)
glColor3f(1, 0,
glVertex3f(-0.
glvertex3f(0.

(0.

-0.

)i
glVertex3f -

glVertex3f(
glEnd(); // GL_QUADS

0
5
5
5
5

I
I
I
I

S0
U UnUn
SO
LnnOnoon

glutSwapBuffers();
I

Computer Graphics

Reshape Callback

Called when the window Is resized

void reshape(int w, int h)

{
glViewport(0.0,0.0,w,h);

glMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho(0.0,w,0.0,h, -1.0, 1.0);

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

Computer Graphics

Mouse Callback

Called when the mouse button is pressed

void mousebutton(int button, int state, int x, inty)

{
if (button==GLUT_LEFT_BUTTON && state==GLUT_DOWN)

{
rx = X; ry = winHeight - y;
}
}

Called when the mouse is moved with button down

void motion(int x, inty)

{

rx = X; ry = winHeight - v;

}

Computer Graphics

Closing the program

* There is no idea to close the current program by OpenGL in
previous programs.

* However, we can do the close operation by simple mouse
callback.

void mouse (GLint btn, GLint state, GLint x, GLint y)
{
if (btn == GLUT RIGHT BUTTON && state == GLUT DOWN)

exit (0) ;

Computer Graphics

Keyboard Callback

Called when a button is pressed

void keyboardCB(unsigned char key, int x, inty)

{
switch(key)
{ case 'a": cout<<"a Pressed"<<endl; break; }

}

Called when a special button is pressed

void special(int key, int x, inty)
{
switch(key)
{ case GLUT_F1 KEY:
cout<<“F1 Pressed"<<endl; break; }

Computer Graphics

Position (7E{i)

* The position on the screen is usually in pixels and the origin is in the
upper left corner

* The display is in a top-down manner to refresh the display

* A World Coordinate in OpenGL application , its origin in the lower
left corner

*y:=h-y

e .
(0, 0)

Computer Graphics

Get the height of window

» To finish the change of y coordinate, we need to know the
window size.

The height would be changed in the procedure of the program running.

Need a global variant to track the changing.

The new height will return a callback function for shape changing.

Also use the glGetintv() and glGetFloat() to obtain.

Computer Graphics

OpenGL - GLUT Example

#include <gl/glut.h> void display(void)
#include <stdlib.h> {

static GLfloat spin = 0.0; glClear(GL_COLOR_BUFFER_BIT);

void init(void)
glPushMatrix();

{
glClearColor(0.0, 0.0, 0.0, 0.0); glRotatef(spin, 0.0, 0.0, 1.0);
glShadeModel(GL_FLAT); glColor3f(1.0, 1.0, 1.0);

} glRectf(-25.0, -25.0, 25.0, 25.0);

glPopMatrix();

glutSwapBuffers();
}

Computer Graphics

OpenGL - GLUT Example

void spinDisplay(void) void reshape(intw, inth)
{ {
spin += 2.0; glViewport(0, 0, (GLsizei) w, (GLsizei)
h);

if(spin > 360.0)
glMatrixMode(GL_PROJECTION);
spin -= 360.0;
glLoadldentity();
glutPostRedisplay();
glOrtho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);

glMatrixMode(GL_MODELVIEW);

glLoadldentity();

Computer Graphics

OpenGL - GLUT Example

void mouse(int button, int state, int x, inty)

{

switch(button)
{
case GLUT_LEFT_BUTTON:
if(state == GLUT_DOWN)
glutldleFunc{ spinDisplay);
break;
case GLUT_RIGHT_BUTTON:
if(state == GLUT_DOWN)
glutldleFunc{ NULL);
break;

default: break;

Computer Graphics

int main(int argc, char ** argv)

{

glutlnit(&argc, argv);

glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutinitWindowsSize(250, 250);
glutinitWindowPosition(100, 100);
glutCreateWindow(argv[0]);

init();

glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMainLoop();

return 0;

Details of OpenGL Program

Contexts and Viewports?

* Each OpenGL application creates a context to issue rendering

commands to.

* The application must also define a viewport, a region of pixels

on the screen that can see the context.

3| Window =

e Can be
e Part of a window
 An entire window

* The whole screen

Viewport

* The viewport is the part of the window your drawing is
displayed to

* By default, the viewport is the entire window

* Modifying the viewport is analogous to changing the size of the
final picture

* From the camera analogy

BECIS) & & & - 2 - * - =0 €

e Can have multiple viewports in the

same window for a split-screen effect

Computer Graphics

Setting the Viewport

* glViewport(int x, inty, int width, int height)
* (x,y)is the location of the origin (lower-left) within the window

e (width, height) is the size of the viewport

* The aspect ratio of the viewport should be the same as that of
the viewing volume

Window

- Viewport

L-Graphics window

height

[]

O —

(0;0) (X’y) width dipping window

OpenGL as a State Machine

e Put a value into various states, then it will remain in effect until
being changed.

* e.g. glColor*()

* Many state variables are enabled or disabled with glEnable(),
glDisable()

e e.g.glEnable(GL_LIGHTO)

Computer Graphics

OpenGL State

* Some attributes of the OpenGL state

 Current color

* Camera properties (location, orientation, field of view, etc.)

* Lighting model (flat, smooth, etc.)
* Type of primitive being drawn

* Line width, dotted line or full line,...

* And many more...

PATTERM FACTOR

Ox00FF 1

Ox00FF z —

0xDCOF 1T — — —_—

OX0COF 3

OXAAAA 1T s e e e - -

OXAAAA 2 - — — — — — — — —

P OXAAAA i = = = — — —

FLAT SHADING SMOOTH SHADING OxAAAA 4 B —

Computer Graphics

V. V:
: 03 Va Vi\. A7) Ve Vs
Vse oV, Vs/ V2 Vs/ »Vy Vs<:>Vz
e o . .
v Vo Vi A

Vo Vi

GL_POINTS 6L_LINES 6L_LINE_STRIP GL_LINE_LOOP
V.
Vi Vs s Vs v v
V2 Vs
v v M
Ve -
s ¢ V. V2 N
Vo Vi Vo Vi e
GL_POLYGON GL_TRIANGLES GL_TRIANGLE_STRIP
Vs V.
5 4 v v. Vs v, Vs
e :
V: \Z vV
ey, ’
Ve V3 Va Va ()
GL_TRIANGLE_FAN GL_QUADS GL_QUAD_STRIP
OpenGL Primitives

OpenGL Input

* All inputs (i.e. geometry) to an OpenGL context are defined as
vertex lists

» glVertex (*)
* *=nt OR ntv
* n- number (2, 3, 4)
* t-type (i = integer, f = float, etc.)

e v -vector

Computer Graphics

OpenGL Types

Typical Corresponding

Suffix Data Type AR T OpenGL Type Definition
b 8-bit integer signed char GLbyte
S 16-bit integer short GLshort
i 32-bit integer long GLint, GLsizei
f 32-bit floating-point float GLfloat, GLclampf
d 64-bit floating-point double GLdouble, GLclampd
ub 8-bit unsigned integer unsigned char GLubyte, GLboolean
us 16-bit unsigned integer unsigned short GLushort
ui 32-bit unsigned integer unsigned long GLuint, GLenum, GLbitfield

Computer Graphics

OpenGL Input

* Examples:

» glVertex2i(5, 4);
» Specifies a vertex at location (5, 4) on the z =0 plane

e “2” tells the system to expect a 2-vector (a vertex defined in 2D)

° Ili”

tells the system that the vertex will have integer locations

Computer Graphics

OpenGL Input

* More examples:

* glVertex3f(.25, .25, .5);

* double vertex[3] = {1.0, .33, 3.14159};
glVertex3dv(vertex);

* “v” tells the system to expect the coordinate list in a single data structure,

instead of a list of n numbers

Computer Graphics

OpenGL Primitive Types

* All geometry is specified by vertex lists

e But can draw multiple types of things

* Points
* Lines
* Triangles

* etc.

* The different things the system knows how to draw are the system

primitives

Computer Graphics

OpenGL Primitive Types

P> P
P; ® - ® P3 P, P3
Poe oPy Po P4
P,® = ®p; Ps Ps
Pé Pé
GL_POINTS GL_POLYGON
P, P,

P, @ " E) P3 P; e, P;3
Poe oPy Po / / P4
P/® o °®Ps P~~~ 'Ps
Pé Pé

GL_POINTS GL_LINES
P P3 Ps Py P, P3

P
P; P3
Po P4
P, Ps
Ps
GL_QUADS
P2
P, Ps
Po P4
P Ps
Ps
GL_LINE_STRIP
Ps P~

ININ/N/

Po P2 Ps Pes
GL_TRIANGLE_STRIP

Computer Graphics

S

GL_QUAD_STRIP

P,

P, Ps3
Po P4
P Ps
Ps
GL_TRIANGLES
)

P Ps3
Po P4
P Ps
Ps
GL_LINE_LOOP

P P,
%\m
= P4
Po

GL_TRIANGLE_FAN

Specifying the OpenGL Primitive Type

* glBegin(primitiveType);
// A list of glVertex* calls goes here

// ...
glEnd();

* primitiveType can be any of several things

glBegin(GL_POLYGON); | gIBegin(GL_POINTS);
glVertex2f(0.0, 0.0); glVertex2f(0.0, 0.0);
glVertex2f(0.0, 3.0); glVertex2f(0.0, 3.0);
glVertex2f(3.0, 3.0); glVertex2f(3.0, 3.0); éL P OLYGON L POINTS
glVertex2f(4.0, 1.5); glVertex2f(4.0, 1.5); - -
glVertex2f(3.0, 0.0); glVertex2f(3.0, 0.0);
glEnd(); glEnd();

Computer Graphics

Color in OpenGL

- OpenGL colors are typically defined as RGB components

- each of which is a float in the range [0.0, 1.0]

- For the screen’s background:
- glClearColor(0.0,0.0, 0.0);// black color
- glClear(GL_COLOR_BUFFER_BIT);

- For objects:
- glColor3f(1.0, 1.0, 1.0); // white color e GLUT RGB and GLUT RGBA

® alpha channel

® g|Color3f (1.0, 1.0, .0);
® g|lColor3i (0, 255,255);
® g|lColor3fv (colorArray);

Computer Graphics

Polygon Display Modes

glPolygonMode(GLenum face, GLenum mode);
- Faces: GL_FRONT, GL_BACK, GL_FRONT_AND_BACK
- Modes: GL_FILL, GL_LINE, GL_POINT

- By default, both the front and back face are drawn filled

glFrontFace(GLenum mode);

- Mode is either GL_CCW (default) or GL_CW

glCullFace(Glenum mode);
- Mode is either GL_FRONT, GL BACK, GL_FRONT_AND_BACK;

You must enable and disable culling with

- glEnable(GL_CULL_FACE) or glDisable(GL_CULL_FACE);

:&#:) Computer Graphics

Drawing Other Objects

* GLU contains calls to draw cylinders, cons, and more complex

surfaces called NURBS.

* GLUT contains calls to draw spheres and cubes.

Polygon model NURBS model

Pure, smooth highlights

Finishing Up Your OpenGL Program

* OpenGL commands are not executed immediately

* They are put into a command buffer that gets fed to the
hardware

* When you’re done drawing, need to send the commands to the
graphics hardware

e —g|Flush() or glFinish()

*
i&i#:) Computer Graphics

glFlush vs. glFinish

 glFlush();
* Forces all issued commands to begin execution
e Returns immediately (asynchronous)
 glFinish();
* Forces all issued commands to begin execution

* Does not return until execution is complete (synchronous)

Computer Graphics

Matrices in OpenGL

* Vertices are transformed by 2 matrices:
* ModelView
* Maps3Dto3D
* Transforms vertices from object coordinates to eye coordinates
* Projection
* Maps 3D to 2D (sort of)

* Transforms vertices from eye coordinates to screen coordinates

Computer Graphics

Matrix in OpenGL

* There are two matrix stacks.
* ModelView matrix (GL_MODELVIEW)

* Projection matrix (GL_PROJECTION)

* When we call functions of transformation, we should change to
the appropriate matrix stack first.

glMatrixMode(GL_MODELVIEW);
//now we are in modelview matrix stack!

//do modelview transformation here.....

glMatrixMode(GL_PROJECTION);
//now we are in projection matrix stack!

//do projection transformation here....

Computer Graphics

Matrix in OpenGL

* Matrix multiplications always apply to the top of matrix stack.

. Bl -
In the stack ~

Translation matrix
(glTranslatef)

Computer Graphics

WARNING! OpenGL Matrices

* In C/C++, we are used to row-major matrices

* In OpenGL, matrices are specified in column-major order

Ay A1 Ay Az] Ag Ay As A
Ay As A Ay A1 As A9 Ajs
As A9 Ao An Az As Ao Aig

A Ay A Ais | [Az Ar An Ass
Row-Major Order Column-Major Order

AV .
i&#:) Computer Graphics

The ModelView Matrix

* Modeling Transformation

* Perform rotate, translate, scale and combinations of these
transformations to the object.

* Viewing Transformation

* To positioning and aiming the camera

object space | camera space

screen space

modeling C?’“E‘Tﬂ i projection viewport
transformation ~ ransformation transformation transformation
& t
y
world space canonical

view volume

Computer Graphics

The ModelView Matrix

* In OpenGlL, the viewing and modeling transforms are combined
into a single matrix - the modelview matrix

* Viewing Transform - positioning the camera

* Modeling Transform - positioning the object

e Why?

e Consider how you would “translate” a fixed object with a real camera

Computer Graphics

Modeling Transformations

 glTranslate{fd}(x, v, z)

* Multiplies current matrix by a matrix that moves an object by x,y,z

glTranslatef(0, 0, -1)

Computer Graphics

Modeling Transformations

» g|lRotate{fd}(angle, x, v, z)

* Multiplies current matrix by a matrix that rotates an object in a
counterclockwise direction about the ray from origin to (x,y,z) with
angle as the degrees

glRotatef(45.0, 0,0, 1)

Computer Graphics

Modeling Transformations

 glScale{fd} (x, vy, z)

* Multiplies current matrix by a matrix that scales an object along axes.

glScalef(2.0, -0.5, 1.0)

Computer Graphics

Viewing Transformations

* gluLookAt (eyex, eyey, eyez, atx, aty, atz, upx, upy, upz);

* By default the camera is at the origin, looking down negative z,

and the up vector is the positive y axis

y' oz Right-handed
Cartesian Coordinates

(prf Upy’ Upz) ®

N

(eye,, eye,, eye,)

— X

Computer Graphics

Using OpenGL Matrices

Use the following function to specify which matrix you are changing:

» glMatrixMode(whichMatrix): whichMatrix = GL_PROJECTION | GL_MODELVIEW

* To guarantee a “fresh start”, use glLoadldentity():

* Loads the identity matrix into the active matrix

* To load a user-defined matrix into the current matrix:

* glLoadMatrix{fd}(TYPE *m)

* To multiply the current matrix by a user defined matrix:

e glMultMatrix{fd}(TYPE *m)

* SUGGESTION: To avoid row-/column-major confusion, specify matrices as m[16]
instead of m[4][4]

Computer Graphics

Transforms in OpenGL

* OpenGL uses 4x4 matrices for all its transforms

e But you don’t have to build them all by hand!
 glRotate{fd}(angle, x, v, 2)

* Rotates counter-clockwise by angle degrees about the vector (x, v, z)

 glTranslate{fd}(x, y, z)
 glScale{fd}(x, y, z)

Computer Graphics

Order of Transforms

* In OpenGL, the last transform in a list is applied FIRST

* Think back to right-multiplication of transforms

A

Rotate then Translate

glTranslatef(1, 0, 0);

drawObject();

N
Lo
/

z

Translate then Rotate

glRotatef(45.0,0,0, 1);

Computer Graphics

glRotatef(45.0, 0,0, 1);
glTranslatef(1,0, 0);
drawObject();

Projection Transforms

* The projection matrix defines the viewing volume

e Used for 2 things:
* Projects an object onto the screen

* Determines how objects are clipped

* The viewpoint (the location of the “camera”) that we’ve been
talking about is at one end of the viewing volume

Computer Graphics

Projection Transform

* Perspective

* Viewing volume is a truncated pyramid

e aka frustum
* Orthographic

* Viewing volume is a box

(XY 02)
k(xy Yo yzy) ! ‘
e < S, i - 7 .
‘ R \\/ﬁ (x’y’zfi Orthographic
h \f.' i . ..
-_\%H\ .l'l . "\\

Perspective / j NN,

~ .
<a,b,c?

Computer Graphics

Perspective Projection

* The most noticeable effect of perspective projection is
foreshortening

* OpenGL provides several functions to define a viewing frustum
e glFrustum(...)
» gluPerspective(...)

\(xf.i ’y])ZU)
< \;f ff
o (x.y)
/ . ff
/ s
!." \“‘-\j‘“»\:‘ ::\
1 T
(a,b,c) ™

Computer Graphics

glFrustum (HREER/RRIK)

e glFrustum(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far)

 (left, bottom, -near) and (right, top, -near) are the bottom-left and top-
right corners of the near clip plane

* faris the distance to the far clip plane

* near and far should always be positive

Computer Graphics

gluPerspective (EE])

* This GL Utility Library function provides a more intuitive way (|
think) to define a frustum

 gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble near,
GLdouble far)
» fovy - field of view in y (in degrees)
* aspect - aspect ratio (width / height)

* near and far - same as with glFrustum()
Aspect =w/h

Computer Graphics

Orthographic Projection

* With orthographic projection, there is no foreshortening (i}l
IKT48)

* Distance from the camera does not change apparent size

e Again, there are several functions that can define an
orthographic projection

e glOrtho()

e gluOrtho2D()

ﬁj(xu Yo 325)
‘ \ ,.'"l;lf) (x) W3 f

/ b \\‘flf ‘\\‘.‘\\
/ N

/ = <
fﬁﬂ\ f\\‘_

'Y cz,}a, C)\\'

Computer Graphics

glOrtho

e glOrtho(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far)

* Arguments are the same as glPerspective()

 (left, bottom, -near) and (right, top, -near) are the bottom-left and top-
right corners of the near clip plane

* near and far can be any values, but they should not be the same

Top
FL
Left ™
|
Toward the ~2_ Right
viewpoint
Bottom Viewing volume g

Near Far

Computer Graphics

http://arkham46.developpez.com/articles/office/vbaopengl/?page=page_3#LIX-B-1-b
http://arkham46.developpez.com/articles/office/vbaopengl/?page=page_3#LIX-B-1-b

gluOrtho2D

* This GL Utility Library function provides a more intuitive way (|
think) to define a frustum

e gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top)

 (left, bottom) and (right, top) define the (x, y) coordinates of the
bottom-left and top-right corners of the clipping region

e Automatically clips to between -1.0 and 1.0 in z

* In 2D mode, frustum is equal to viewport

Computer Graphics

OpenGL Transformations

glTranslatef gluPerspective

glRotatef gluOrtho2D
glScalf glFrustum
gluLookAt glOrtho glViewport()

Vertex > || Modelview D Projection D 7 ive [> Viewport [>
Matrix Matrix Division Mransformatiol

X l l J'
X
Y
(Y)
Z i =]]
W eye clip normalized device = window
coordinates coordinates coordinates coordinates

Computer Graphics

References

* OpenGL officially website:
* http://www.opengl.org

* NeHe’s OpenGL course (useful installation guides included)
o http://www.yakergong.net/nehe/ (Chinese)

* The Red Book (OpenGL Programming Guide)

OpenGL

Programming Guide
Eighth Edition

The Official Guide to Learning
OpenGL®, Version 4.3

An PDF version is available online:

http://www.ics.uci.edu/~gopi/CS211B/opengl
programming guide 8th edition.pdf

Dave Shreiner ® Graham Sellers ® John Kessenich e Bill Licea-Kane
The Khronos OpenGL ARB Working Group

http://www.yakergong.net/nehe/
http://www.ics.uci.edu/~gopi/CS211B/opengl_programming_guide_8th_edition.pdf

FLTK

Fast Light Toolkit

Cross-Platform C++ GUI Toolkit

Provides more full-featured Ul functionality than GLUT
Also supports GLUT code through emulation

Download from http://www.fltk.org

{&@:) Computer Graphics

http://www.fltk.org/

